

Cross-boarder climate scenarios An example of challenges faced by users in the current framework

Sven Kotlarski (MeteoSwiss)

Harald Rybka, Nora Leps, Christian Steger (Deutscher Wetterdienst DWD) Theresa Schellander-Gorgas (GeoSphere Austria) Martha Kogler (University of Vienna)

D-A-CH Collaboration on climate scenarios

- Long-lasting and intense collaboration of the German, Austrian and Swiss Met Services on weather and climate services, including climate scenarios
- Exchange of models, methods, tools, know how
- National scenarios are mostly based on dynamically downscaled CMIP simulations (EURO-CORDEX)
- Mid-term aim: Provide consistent cross-boarder scenarios

The need for consistent cross-boarder scenarios

National boarders **do not align** with drainage basins

The need for consistent cross-boarder scenarios

https://www.eea.europa.eu/

500 km Bai

National boarders **do not align** with drainage basins

Challenges (non-exhaustive):

- Differing national **time lines** (e.g., adaptation strategies)
- Differing **funding schemes**
- Differing climate **monitoring** standards and different monitoring grids
- Different focus topics in terms of climate change impacts (e.g. sea level rise vs. snow scarcity)
- Different "present-day" reference periods
- Overall: Delayed availability of dynamically downscaled ensembles → hard to follow IPCC cycles

nal seas		
hite Sea	Norwegian Sea	Atlantic Ocean
rents Sea	Mediterranean Sea	North Sea
ltic Sea	Black Sea and Sea of Azov	Not classified

Differences in national-scale scenario data

NN

...

- **44** (core: **17**) EURO-CORDEX simulations
- Downscaling and bias adjustment by quantile delta mapping and MBC
- **Observational grid**: 5 km
- Specific set of **indicators**

- ÖKS15
- simulations

. . .

26 EURO-CORDEX

Downscaling and bias adjustment by scaled distribution mapping

Observational grid: 1 km

Specific set of **indicators**

CH2018

...

- 68 EURO-CORDEX simulations
- Downscaling and bias adjustment by **empirical** quantile mapping
- **Observational grid**: 2 km
- Specific set of **indicators**

Differences in national-scale scenario data

- CH2018
- 68 EURO-CORDEX simulations

...

- **Observational grid**: 2 km
- Specific set of **indicators**

Consequences: Lake of Constance region

Consequences: Lake of Constance region

Comparison of climate scenario data obtained by each city administration from their respective national service provider

All cities located within the same 2-3 EURO-CORDEX 12 km grid cells

Differences in annual mean temperature change RCP8.5, end-of-century wrt. present-day, influence of model selection **and** bias adjustment

Differences in annual mean temperature change RCP8.5, end-of-century wrt. present-day, influence of model selection **and** bias adjustment

Differences in annual mean precipitation change RCP8.5, end-of-century wrt. present-day, influence of model selection **and** bias adjustment

Differences in annual mean precipitation change RCP8.5, end-of-century wrt. present-day, influence of model selection **and** bias adjustment

Differences change in the annual number of summer days RCP8.5, end-of-century wrt. present-day, influence of model selection **and** bias adjustment

Differences change in the annual number of summer days RCP8.5, end-of-century wrt. present-day, influence of model selection **and** bias adjustment

Ways forward

- Harmonization of national frameworks (time lines, refernce periods, indicators etc.)
- Joint evaluation and eventually model selection on regional scale: Currently under way in EURO-CORDEX (Sobolowski et al., BAMS, in review) and D-A-CH
- More rapid dynamical downscaling of CMIP simulations, better integration of statistical downscaling and high-res GCMs

Ways forward

- Harmonization of national frameworks (time lines, refernce periods, indicators etc.)
- Joint evaluation and eventually model selection on regional scale: Currently under way in EURO-CORDEX (Sobolowski et al., BAMS, in review) and D-A-CH
- More rapid dynamical downscaling of CMIP simulations, better integration of statistical downscaling and high-res GCMs
- CMIP: Fast(er) provision of **RCM forcing data**
- CMIP: Well-informed GCM selection and consistent ensembles across emission scenarios

. . .

nank Vou

sven.kotlarski@meteoswiss.ch

cmip-ipo@esa.int

in wcrp-cmip

