

Solar forcing

Bernd Funke, Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain

CMIP Climate Forcings WCRP TAA

Contributors

Solar forcing in climate models

"Low-top" model without interactive chemistry

"Medium-top" model with interactive chemistry

"High-top" model with interactive chemistry

Radiative forcing for CMIP7

Version 2 HSRS solar reference spectrum

Recommended as new solar irradiance reference spectrum standard by CEOS Working Group on Calibration and Validation (WGCV)

UV: 1-5% > CMIP6 VIS: 1-2% < CMIP6

Direct implications on the climate response: albedo of sea ice is higher in the visible and lower in the Near-IR. Relevant for climate model tuning (prior to simulations)

How "final" is the CMIP7 TSI reference?

SOLARISHEPPA

Why not merging again NNL1 and SATIRE?

Out-of-phase short-term variability in the early phase of the CMIP period.

SOLARISHEPPA

Merging would lead to dampening of variability magnitude and unrealistic variability patterns

TSI differences (annual scale): $< 0.2 W m⁻²$

Reference (NNL1-CDR3) vs. sensitivity (SATIRE) dataset

Slightly larger UV variability in SATIRE-CMIP7

CMIP Climate Forcings

•TSI reference slightly larger: $+0.615$ Wm⁻²

Solar radiative forcing: CMIP7 vs. CMIP6

SOLARISHEPPA

- •slightly smaller secular trend
- •enhanced (reduced) irradiance in the UV (NIR)
- •slightly smaller (larger) decadal variability in the UV (NIR)

Energetic particle forcing (most relevant for generation of O3 dataset)

Consideration of both (0 and 90 deg) telescopes, improved energy s fined reconstruction **Ap response**

IOO MeV fluxes (Rakunen et al., 2022), MC-based modeling of nucleonic cascade

Use of NM data after 1951

Inproved Series

Figure 4-13. (top) Temporal evolution of the NO_v contribution produced by energetic particle precipitation (EPP-NO_v) (in ppmv) at 70°-90°S taken by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite during 2002-2012. The contribution of EPP-NO_v has been discriminated from that produced by N₂O oxidation using a tracer correlation method based on MIPAS CH₄ and CO observations. (Adapted from Funke et al., 2014). (middle and bottom) Ozone loss due to EPP as a function of pressure level (middle) and for the total ozone column (bottom) at southern high latitudes (70°-90°S). Shown is the percentage difference between EMAC model simulations with and without EPP impact. The EPP effect is prescribed as an upper boundary condition of NO_y based on MIPAS observations; solar proton events (e.g., in October/November 2003 or January 2005) are prescribed by modeled ionization rates. Adapted from Sinnhuber et al. (2018).

WMO-UNEP Ozone Assessment 2018, Chapter 4

Future solar activity scenario(s)

stationary-Sun scenario (i.e., repetition of solar cycle 23)

- plausible scenario for future solar activity, exhibiting variability at all timescales (daily to centennial) in accordance with the Sun's past behavior (from cosmogenic isotope records)
- One reference + one extreme scenario

- Ensemble of solar activity evolutions from surrogate analysis of cosmogenic isotope records
- Generation of corresponding SSN and Ap records to feed reconstruction models
- One reference scenario (for climate model simulations) + ensemble forcing for DA analysis

CMIP Climate Forcings | WCRP TAA

Solar forcing: Status and timeline

• First preliminary (CMIP6plus) historical dataset released in June, current version 4-4

• Particle forcing: Ongoing refinements of MEE reconstruction (to be solved within next

- (accessible on input4MIPs and solarisheppa.geomar.de)
- Status Version 4-4:
	- Radiative forcing (TSI, SSI) stable
	- weeks)
	- Still missing: uncertainty estimates
- Final historical dataset (for CMIP7 DECK) to be delivered until Jan 2025
- Future solar forcing (to be finalized until end of 2025)

Thank You