



# **Ozone and N-deposition forcings**

Michaela I. Hegglin, Institute of Climate and Energy Systems – Stratosphere, Forschungszentrum Jülich, Germany











#### **CMIP** Climate Forcings



### Contributors

| Name             | Affiliation | Country |
|------------------|-------------|---------|
| Douglas Kinnison | NCAR        | USA     |
| David Plummer    | ECCC        | Canada  |
| Patrick Jöckel   | DLR         | Germany |
| Olaf Stein       | FZJ         | Germany |
| Lars Hoffmann    | FZJ         | Germany |
| Xiaodan Ma       | FZJ         | Germany |
| Michaela Hegglin | FZJ         | Germany |
| Daan Hubert      | BIRA        | Belgium |









#### **CMIP** Climate Forcings



## **Ozone and N-deposition forcings: Status and timeline**

- First preliminary (CMIP6plus) historical datasets will be released end of November 2024.
- CMIP6plus will be a simple extension of CMIP6 database
  - Time period covered 1850-2021.
  - Extension will be based on SSP370 future scenario from CMIP6.
- Current status:
  - Tests, which SSP to be used for extension is finalised.
  - Gathering user needs for data formatting, shortcomings, needed updates, in progress.
- PI dataset (for CMIP7 DECK) to be delivered by January 2025.
- Final historical dataset (for CMIP7 DECK) to be delivered by May 2025
- Future ozone forcings for multiple scenarios (to be finalized by mid 2026)







#### **CMIP** Climate Forcings



- Consider user requirements.
- Make fully consistent with other forcings (solar, GHGs, SLCF emissions, volcanic aerosol,...)
  - This was not the case for CMIP6, where CMIP5 emissions were used.
  - A new historical QBO forcing will be used to nudge models towards.
- Use three state-of-the-art chemistry-climate models, all of them stratosphere-troposphere resolving, to improve upon identified shortcomings in models.
  - WACCM-CESM (USA)
  - CMAM (Canada)
  - EMAC (Germany)
- Format remains the same as that provided for CMIP6.
  - Similar horizontal resolution: 96x144
  - Similar vertical resolution: 66 levels
  - Time averaging: Monthly. Hourly surface fields will also be provided.
- Harmonise historical (1850–2021) and future simulations (out to 2100, no step changes). Make use of observations using latest methods of data science (ML) (including for extensive validation).
- Plans for operationalization.















## **Ozone Example**

- Total ozone forcing (mainly due to tropospheric air pollutant emissions) is positive.
- Ozone forcing due to ozone depleting substances (ODSs) is **negative** (stratospheric ozone depletion).
- CMIP6 (cross) ozone forcing agrees with CMIP5 (circle) multi-model mean (due to emissions used being the same!).
- The CMIP6 (triangle) multi-model mean ozone RF is larger w/o outliers (i.e, UKESM and two stratosphere-only models).
- CMIP7 expected to be closer to CMIP6  $\rightarrow$ CMIP6plus should only be used for testing purposes!











Skeie, Myhre, ... Hegglin et al., npj Climate and Atmosphere 2020







## Nitrogen Example

- Harmonisation necessary due to different emission scenarios available for historical and future simulations:
  - CMIP5 historical emissions
  - CMIP6 SSP2-45 future scenario
- Scaling approach accounts for seasonality.









